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The 14C + n ↔ 15C system has been used as a test case in the evaluation of a new method to determine
spectroscopic factors that uses the asymptotic normalization coefficient (ANC). The method proved to be
unsuccessful for this case. As part of this experimental program, the ANCs for the 15C ground state and
first excited state were determined using a heavy-ion neutron transfer reaction as well as the inverse kinematics
(d ,p) reaction, measured at the Texas A&M Cyclotron Institute. The values C2

2s1/2 = 1.88 ± 0.18 fm−1 for the
ground state and C2

1d5/2 = 4.25 ± 0.38 × 10−3 fm−1 for the first excited state (Eexc = 740 keV) were obtained.
The ANCs were used to evaluate the astrophysical direct neutron capture rate on 14C, which was then compared
with the most recent direct measurement and found to be in good agreement. A study of the 15C SF via its mirror
nucleus 15F and a new insight into deuteron stripping theory are also presented.

PACS number(s): 21.10.Jx, 25.70.−z, 25.45.−z, 24.50.+g

I. INTRODUCTION

The 14C(n,γ )15C direct radiative capture reaction is thought
to be important in a variety of astrophysical scenarios.
Among those are inhomogeneous big-bang nucleosynthesis
(IBBN) [1], depletion of carbon-nitrogen-oxygen (CNO) cycle
isotopes in asymptotic giant branch (AGB) stars [2], and
production of seed nuclei for possible r process in core-
collapse supernovae [3]. Additionally, this reaction is useful as
a benchmark for indirect methods to determine astrophysical
neutron capture rates. A large disagreement between direct
measurement, indirect measurements, and theory persisted
for many years as the result of an error in the early direct
measurement [4]. This measurement was later repeated [5].

Asymptotic normalization coefficients (ANCs) were shown
to be a useful tool in determining low-energy proton direct-
capture rates (see, for example, Ref. [6]) because, at low
energies, proton capture is a peripheral process whose rate is
governed by the asymptotic tail of the radial overlap function.
Likewise, if a direct neutron capture reaction is peripheral

*Corresponding authors: mmccleskey@umm.edu, akram@comp.
tamu.edu
†Also at the National Institute for Physics and Nuclear Engineering,

Bucharest-Magurele, Romania.
‡Present address: Department of Physics and Astronomy, James

Madison University, Harrisonburg, VA 22807.
§Present address: INPP, Ohio University, Athens, OH 45701.

owing to an angular momentum barrier resulting from s-wave
capture being inhibited by selection rules, it, too, can be
determined using the ANC. Such is the case for 14C(n,γ )15C,
which is dominated by p-wave capture [7].

Usually transfer angular distributions are analyzed within
the framework of the distorted-wave Born approximation
(DWBA), continuum discretized coupled channels (CDCC), or
the adiabatic model. The SF determined by the normalization
of the calculated differential cross section to the experimental
cross section is compared with the SF predicted by the shell
model. Even when error bars in the experimental cross section
are low, the uncertainty of the extracted SF resulting from
the normalization of the calculated cross section is often
large owing to the following inaccuracies: (i) optical potential
ambiguities, (ii) the inadequacy of the reaction theory, and
(iii) the dependence on the single-particle potential parameters.
We concentrate here on the third point considering the DWBA.

In the standard approach the parametrization of the DWBA
reaction amplitude A(d,p)F in terms of the SF comes as a
result of the approximation of the radial overlap function

Ilj = Sljφnlj (r), (1)

where Slj is the single-particle spectroscopic factor of the
configuration n + A in F and φnlj is the neutron radial
bound-state wave function calculated in the adopted mean-
field potential. Because the squares of the norms of the radial
overlap function and the radial bound-state wave function
are, correspondingly, the spectroscopic factor and unity, the
single-particle spectroscopic factor in Eq. (1) will equal the
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spectroscopic factor if the radial bound-state wave function and
the radial overlap function have very similar radial behavior in
both the nuclear interior, r < RN , and the exterior. However,
in the nuclear interior and near the nuclear surface, where
both the overlap function and the bound-state wave function
have most of their probability, the radial dependence of the
overlap function and single-particle wave function, a priori,
are different because the overlap function is a many-particle
object, whereas the single-particle wave function is a solution
of the single-particle Schrödinger equation. Thus, in general,
the single-particle spectroscopic factor does not coincide with
the spectroscopic factor microscopically calculated as the
square of the norm of the overlap function. Nonetheless,
for r > RN , the radial dependencies of the radial overlap
function and the radial bound-state wave function are the
same, and they differ only by their overall normalizations.
The asymptotic behavior of the radial overlap function and the
radial bound-state wave function are given by

Ilj (r)
r>RN−−−→ Clj iκh

(1)
l (iκr) (2)

and

φnlj (r)
r>RN−−−→ bnlj iκh

(1)
l (iκr), (3)

correspondingly. Here Clj is the ANC for the neutron removal,
bnlj is the single-particle ANC, l,j are the orbital angular
and total angular momentum of the neutron, respectively, n
is the principal quantum number of the neutron orbital, κ =√

2µnAηnA is the bound-state wave number, ηnA is the neutron
binding energy, and µnA is the reduced mass of n and A. Then,
comparing Eqs. (1)–(3), we get

S =
C2

lj

b2
nlj

. (4)

While the ANC is an experimentally measurable quantity, the
single-particle ANC bnlj is not. Hence, the single-particle SF,
when defined by Eq. (4), is model dependent. Its model depen-
dence comes through the single-particle ANC bnlj , which is a
function of the geometric parameters, radius r0 and diffuseness
a, of the Woods-Saxon potential conventionally used as a
single-particle potential. Furthermore, note that, unlike the
SF determined through the norm of the overlap function, the
single-particle SF Slj as defined in Eq. (4) is actually a property
of the peripheral part of the neutron overlap function.

In the standard approach, which is described and used in
Refs. [8,9], Eq. (4) is neglected and the single-particle SF
is determined by normalization of the calculated differential
cross section to the experimental cross section at the main
stripping peak of the angular distribution and, hence, is a
function of the adopted single-particle potential. Because the
ANC determines the normalization of the external part of
the reaction amplitude, which typically gives the dominant
contribution to the total nucleon transfer amplitude, neglecting
Eq. (4) may provide the SF at the expense of a wrong external
contribution. As an example we mention the critical analysis
of the SF determination for the reaction 48Ca(d,p)49Ca. In the
standard analysis used in Ref. [9], the adopted geometry of the
single-particle potential was r0 = 1.25 fm and a = 0.65 fm.
The determined single-particle SF was 0.62 ± 0.07. For the

adopted geometry the square of the neutron single-particle
ANC is 33.52 fm−1, which, according to Eq. (4), leads to the
square of the neutron ANC C2

13/2 = 20.8 ± 2.3 fm−1, while
the experimental value is C2

13/2 = 32.1 ± 3.2 fm−1 [10]. This
instructive example clearly demonstrates the shortcoming of
the standard procedure for the determination of the SF.

In this paper we test a combined method for the determina-
tion of the SF, which fixes correctly the external contribution
to the reaction amplitude by taking into account Eq. (4) [11].
This procedure allows us to critically test the reliability of
the determination of SFs from the nucleon transfer reactions
because now its accuracy depends on how accurately the
internal part of the reaction amplitude is calculated. Using
the 15C ↔ 14C + n system as a test case for this new method
has the benefit of allowing the evaluation of the astrophysical
14C(n,γ )15C reaction rate using the ANC.

To accomplish this, three reactions were measured. For the
determination of the ANC, the heavy-ion (HI) neutron transfer
reaction 13C(14C,15C)12C at 12 MeV/nucleon and the inverse
kinematics reaction d(14C,p)15C at 11.7 MeV/nucleon were
used. To evaluate the new method, the less peripheral reaction
14C(d,p)15C with Ed = 60 MeV was also measured.

II. DETERMINING THE ANC FOR 15C↔ 14C + n

A. 13C(14C,15C)12C

This measurement was performed using a 12 MeV/nucleon
14C beam from the K500 superconducting cyclotron at TAMU-
CI. This energy was selected to ensure that the reaction was
peripheral and because of significant past experience with
nucleon transfer reactions around this energy [12]. After the
cyclotron, the beam analysis system (BAS) [13] was used to
improve the momentum and position resolution of the beam,
which was then transported to the multipole-dipole-multipole
(MDM) spectrometer [14]. The beam was focused on a
104 ± 4 µg/cm2 13C target. The Oxford detector [15], an
ionization chamber detector, was placed in the focal plane
of the spectrometer and filled with isobutane gas at a pressure
of 50 torr. The energy loss of the reaction products in the
gas plotted against their energy when stopped in a plastic
scintillator after the detector was used for particle identification
and is shown in Fig. 1. Because of the similar magnetic
rigidities of the 14C elastic scattering and the 15C reaction
products, both were accepted into the detector and were
measured at the same time. Four position-sensitive avalanche
counters inside the detector were used to measure the angle and
reconstruct the position in the focal plane of the spectrometer.
This information was also used in a raytrace reconstruction of
the angle of the reaction products after the target, which was
used to extract the angular distribution.

The ANC, Clj , is defined as the ratio of the overlap function,
Ilj , to a Whittaker function for a Sommerfeld parameter η,
orbital angular momentum l, and wave number κ =

√
2µAxεB

of the particle(x)-core(A) relative motion that is evaluated at
a radius, r , larger than the nuclear radius RN ,

Ilj (r)
r>RN→ Clj

W−η,(l+1/2)(2κr)
r

. (5)

In the case of a neutron-core system, it is given by Eq. (2).
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FIG. 1. (Color online) &E-E particle identification for the HI
measurement.

This leads to a parametrization of the cross section of a
peripheral reaction A(a,b)B, where a nucleon x is transferred
from a to A, in terms of the ANCs [16],

dσ

d(
=

∑

jB lB

(
CB

AxlBjB

)2(
Ca

bxlaja

)2 σ DW
lB jB laja

b2
AxlBjB

b2
bxlaja

. (6)

Here σDW is the calculated DWBA cross section, C is the
ANC, and l and j are orbital and total angular momentum,
respectively. To find the ANC for 15C ↔ 14C + n from
13C(14C,15C)12C requires the ANC for 13C ↔ 12C + n, which
is C2 = 2.31 ± 0.08 fm−1 [17].

The dominant source of uncertainty in the DWBA calcula-
tion of the angular distribution of the transfer and thus in the
ANC is the choice of the optical model potential (OMP), which
generates the distorted wave in the entrance and exit channels.
Two approaches to find an OMP from the measured elastic
scattering data were used here. The first, a phenomenological
grid search in real potential depth used an OMP of the form

UOMP = V + iW, (7)
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FIG. 2. (Color online) Experimental data points for the elastic
scattering of 12 MeV/nucleon 14C on 13C are shown as black dots.
The calculated distributions resulting from the grid search are shown
decomposed into near (dotted blue line) and far (dot-dashed red line)
distributions and their coherent sum (solid black line).

where V and W are of the Wood-Saxon form

VWS = − V0

1 + exp
(

r−R0
a0

) . (8)

In this grid search a fit was made of the five remaining param-
eters at each point. The results were families of continuously
ambiguous potentials with similar quality fits for a large variety
of real potential depths. As a result, five depths were arbitrarily
chosen for further fitting, resulting in five final OMPs for this
approach, which are shown in Table I. The elastic angular
distributions calculated from these OMPs are plotted against
the experimental data in Fig. 2. For all angular distributions
shown for this HI measurement (both elastic scattering and
neutron transfer), the experimental uncertainty is smaller than
the data points and thus error bars are not plotted.

The second approach was a semimicroscopic double-
folding (DF) calculation using the Jeukenne, Lejeune, and
Mahaux (JLM) effective interaction as described in Ref. [12].
This approach has the advantage of having fewer parameters

TABLE I. Optical model potential parameters for 12 MeV/nucleon 14C elastic scattering on 13C.

V (MeV) W (MeV) rv (fm) rw (fm) av (fm) aw (fm) χ 2 Jv (MeV fm3) Rv (fm) Jw (MeV fm3) Rw (fm)

WS1 77.1 13.32 0.987 1.209 0.703 0.723 3.09 225 4.480 68 5.206
WS2 118.7 14.15 0.927 1.191 0.690 0.739 3.4 292 4.275 69 5.182
WS3 162.4 15.03 0.891 1.169 0.674 0.767 3.59 357 4.132 71 5.169
WS4 203.1 16.04 0.894 1.133 0.627 0.825 3.6 438 4.038 71 5.183
WS5 248.8 16.66 0.885 1.115 0.606 0.848 3.65 516 3.965 72 5.180
DF 141.43 45.72 0.735 0.812 0.920 1.020 3.4
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FIG. 3. (Color online) Result of the DF calculation for elastic
scattering of 12 MeV/nucleon 14C on 13C shown decomposed into
near (dotted blue line) and far (dot-dashed red line) distributions and
the coherent sum (solid black line).

to fit (either two or four, depending on whether the ranges
are kept fixed at the best values given in Ref. [12], as was
done here). After fitting to the elastic scattering, the potential
is fit in the surface region to a WS form, which is then
used in the DWBA calculation of the transfer. The DWBA
calculation was performed using the code PTOLEMY [18]. The
fit of the elastic angular distribution from this approach and the
measured distribution are shown in Fig. 3 and the results of the
DWBA calculations for all of the potentials are plotted with
the transfer in Fig. 4 (ground state) and Fig. 5 (first excited
state). We restricted the analysis to the J π = 1/2+ ground
state and J π = 5/2+ first and only particle bound excited state
(Eexc = 740 keV [19]) of 15C. In calculations the orbitals 2s1/2
and 1d5/2, respectively, were considered. The resulting OMPs
of both approaches and the extracted ANCs are summarized in
Tables I and II. The same OMP was used in both the entrance
and exit channel for each case.
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FIG. 4. (Color online) The calculated distributions for
13C(14C,15C)12C (E14C = 12 MeV/nucleon) neutron transfer to
the ground state have been normalized to the experimental data from
5◦ to 11◦. Calculations using the WS potentials from the grid search
are shown in (a); those using DF are shown in (b).
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FIG. 5. (Color online) The calculated distributions for
13C(14C,15C)12C (E14C = 12 MeV/nucleon) neutron transfer
to the first excited state normalized to the experimental data.
Calculations using the WS potentials from the grid search are shown
in (a); those using DF are shown in (b).

Sources of uncertainty in this measurement were target
thickness (4%), normalization to the number of incident
particles (3%), data extraction and disentanglement from the
first excited state of 15C (5%), statistical uncertainty (6% for
the ground state and 1% for the first excited state), and a
systematic uncertainty from the calculation evaluated based
on the variation of the results owing to the choice of optical
potential (10%). These independent sources of uncertainty
added in quadrature give an overall uncertainty in the ANC2

of 14% for the ground state and 13% for the first excited state.

B. d(14C, p)15C

The measurement of the angular distribution for the inverse
kinematics (d,p) reaction on 14C was performed as the
commissioning run for the Texas A&M-Edinburgh-Catania-
Silicon-Array (TECSA). A 14C beam of 11.7 MeV/nucleon
impinged on a 251 ± 5 µg/cm2 CD2 target. At this beam
energy this reaction is peripheral. The protons were detected
in the backwards (lab) direction by the high-efficiency array of
silicon detectors from 102◦ to 165◦ laboratory angle (4.5◦ to
32.2◦ c.m.). As in the HI neutron transfer reaction described in
the previous section, both transfer to the ground state and first
excited state were measured. More details of the apparatus
and this experiment are given in Ref. [20]. The angular
distributions were calculated using the code FRESCO [21].
The adiabatic distorted wave approximation (ADWA) [22]
was used for the entrance channel utilizing CH89 [23] and

TABLE II. Phenomenological SFs and ANCs obtained with
DWBA calculation using the OMPs.

SF2s1/2 C2
2s1/2 (fm−1) SF1d5/2 C2

1d5/2 (fm−1)

WS1-WS1 1.22 2.30 1.13 4.45 × 10−3

WS2-WS2 1.16 2.18 1.02 4.03 × 10−3

WS3-WS3 1.04 1.95 1.13 4.46 × 10−3

WS4-WS4 0.98 1.83 1.20 4.74 × 10−3

WS5-WS5 1.14 2.14 1.25 4.94 × 10−3

DF 1.15 2.16 1.09 4.28 × 10−3

Average 1.12 f2.09 1.14 4.48 × 10−3
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FIG. 6. (Color online) Shown in (a) is the angular distribution
for d(14C,p)15C (E14C = 11.7 MeV/nucleon) transfer to the 2s1/2
ground state. Black dots mark the experimental data points and the
solid red line is the ADWA calculation using CH89 potential, while
the dashed green line is a similar calculation with KD03 potentials.
Uncertainty in the experimental data is smaller than the data points
and is not plotted. Shown in (b) is the same for the 740-keV 1d5/2
first excited state; however, experimental uncertainty is larger than
the data points and is shown.

Koning-Delaroche (KD03) [24] single nucleon potentials for
the proton and neutron evaluated at half the deuteron energy.
The finite range correction described in Ref. [25] was applied
to the potential for the entrance channel. The experimental
and renormalized calculations are shown in Fig. 6, and the
resulting ANCs are given in Table III.

The overall experimental uncertainty for the measured
differential cross section was 8%, which consisted of 2%
owing to target thickness, 2% to 6% from the incident beam
normalization, 4% for the analysis, and <2% for statistics.
This combined with a 10% systematic uncertainty from the
choice of OMP gives an overall uncertainty in C2 of 12%.
The ANC for the ground state was found to be C2

2s1/2 =
1.77 ± 0.21 fm−1 and for the first excited state C2

1d5/2 =
(4.08 ± 0.49) × 10−3 fm−1, consistent with those found from
13C(14C,15C)12C.

C. Summary of the ANC

The ANCs from the two peripheral reactions measured in
this work are summarized in Table IV. The average values
for the ANC2 weighted for the uncertainties in the different
measurements were 1.88 ± 0.18 fm−1 for the ground state
and (4.25 ± 0.38) × 10−3 fm−1 for the first excited state. It
should be noted that these two reaction measurements have
independent, uncorrelated uncertainties (different targets,
different beam normalization methods, different methods used
to determine optical potentials) up to the use of first-order
DWBA reaction theory in the extraction of the ANCs, the

TABLE III. C2 values from d(14C,p)15C.

C2
2s1/2 (fm−1) C2

1d5/2 (fm−1)

CH89 1.95 4.22 × 10−3

KD03 1.59 3.94 × 10−3

Average 1.77 4.08 × 10−3

TABLE IV. Summary of squared ANCs found in the different
measurements presented in this work.

Experiment C2
2s1/2 (fm−1) C2

1d5/2 (fm−1)

HI transfer 2.09 ± 0.29 (4.48 ± 0.58) × 10−3

d(14C,p)15C 1.77 ± 0.21 (4.08 ± 0.49) × 10−3

Average 1.88 ± 0.18 (4.25 ± 0.38) × 10−3

contribution from which we do not attempt to estimate. A
summary of different determinations of the ANC is given in
Table V. An analysis [26] of nuclear breakup measurements
of 15C at about 60 MeV/nucleon [31,32] found the C2

2s1/2 =
1.48 ± 0.18 fm−1 and the analysis of Coulomb dissociation of
15C [33] found C2

2s1/2 = 1.64 ± 0.03 fm−1; however, this value
was revised to be C2

2s1/2 = 1.74 ± 0.11 fm−1 in a subsequent
erratum [29]. The analysis of a recent measurement of 14C(d,p)
at Ed = 17 MeV made at the Nuclear Physics Institute of
the Czech Academy of Sciences [30] yielded a value of
C2

2s1/2 = 1.64 ± 0.26 fm−1 for the ground state. This smaller
value combined with that obtained in this work reconciles what
had been a significant difference between the ANC obtained
from transfer [28] and those from other methods (breakup [26],
Coulomb dissociation [33], and mirror symmetry [27]).

III. EVALUATION OF THE SF FROM THE ANC

A 60-MeV total deuteron energy beam from the K500
cyclotron at TAMU-CI was used to measure the forward
kinematics (d,p) reaction on a 14C target. Reaction products
were again measured using the MDM spectrometer and the
Oxford detector as in 13C(14C,15C)12C. In an attempt to
compensate for the higher energy and low Z, the pressure
in the detector was increased, however, the energy-loss signals
were still too small to be of use in particle identification, so
instead a thick (1.5′′) scintillator after the gas was used to
stop both deuterons and protons. Because the higher-energy
protons travel much further in the scintillator than the inelastic
deuterons of the same rigidity, a good separation was made
(Fig. 7). The target was 355 ± 25 µg/cm2 enriched (∼89%)
14C. Elastic scattering was measured from 3◦ to 35◦ laboratory
(3.4◦ to 39.9◦ c.m.) and the transfer reaction was measured
from 3◦ to 23◦ laboratory (3.4◦ to 25.3◦ c.m.). Elastic scattering
and (d,p) reaction products were also measured on a natC target
of known thickness which was compared with the 12C(d,p)13C

TABLE V. Comparison of squared ANC values from previous
determinations.

Reference C2
2s1/2 (fm−1) C2

1d5/2 (fm−1)

[26] 1.48 ± 0.18
[27] 1.89 ± 0.11
[28] 2.14
[29] 1.74 ± 0.11
[30] 1.64 ± 0.26 (3.55 ± 0.43) × 10−3

This work 1.88 ± 0.18 (4.25 ± 0.38) × 10−3
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FIG. 7. Particle identification from the 14C(d,p)15C reaction. In (a) a good separation of protons from inelastically scattered deuterons is
shown. Panel (b) shows the contents of the proton peak plotted as a function of position in the focal plane.

that occurred on the 12C impurity in the 14C target to determine
the 12C content (∼11%).

As in the case of the inverse kinematics d(14C,p)15C
reaction described previously, the angular distribution was
calculated using the ADWA and the code FRESCO. The results
of these calculations and the measured angular distributions
are shown in Fig. 8. The optical potential in the entrance
channel was given by the sum of the single nucleon potentials
of the incident proton and neutron evaluated at half the
deuteron energy. The potentials were obtained from the KD03
global parametrization. Because this was intended to be a
nonperipheral reaction that could be used to determine the
SF with the method of Ref. [11], this calculation of the
cross section was repeated for a variety of choices of binding
potential geometry by varying the radius parameter (r0) of
the WS binding potential, while keeping the diffuseness fixed.
The depth was adjusted for each point to reproduce the neutron
separation energy. For a peripheral reaction the dependence on
the binding potential geometry [and thus on the single-particle
ANC (SPANC)] will be weak and one can then determine the
ANC. If, however, the dependence is strong, one can compare
this calculation with experiment and find a particular range of
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FIG. 8. (Color online) Shown in (a) is the angular distribution for
14C(d,p)15C (Ed = 60 MeV) transfer to the ground state (black dots)
and the ADWA calculation (red); the same is shown in (b) for transfer
to the 1d5/2 excited state (black dots, experiment; green line, ADWA).

SPANC values that produce the correct ANC and then use this
to determine the SF.

Following Ref. [11], a function

RDW(bnlj ) =
∣∣∣∣
T̃int

bnlj

+ T̃ext

∣∣∣∣
2

(9)

was constructed, where the single-particle ANC, bnlj , is a
function of the binding potential geometry and T̃int and T̃ext
are the transfer matrix elements representing integration over
the interior and exterior regions, respectively, as described in
Ref. [11]. The experimental counterpart of Eq. (9) is

Rexp =
dσ
d(

exp

C2
lj

, (10)

where C2
lj is the ANC squared. These functions were com-

pared for the angle corresponding to the most forward point
measured in the experiment and are summarized in Fig. 9.

The equality Rexp = RDW(bnlj ) should allow us to de-
termine the SPANC given the additional condition that the
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FIG. 9. (Color online) RDW (red, curved line) and Rexp (blue,
horizontal line) for 14C(d,p)15C (Ed = 60 MeV) transfer to the
ground state (a) and the d5/2 first excited state (RDW, green curved line;
Rexp, purple horizontal line) (b) as a function of the radius parameter,
r0, of the WS binding potential. The uncertainties are shown by the
hatched areas. In the calculation this is taken to be 10% and reflects
the systematic uncertainty.
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normalization of the external contribution to the reaction
amplitude is fixed correctly via the ANC. However, the ground-
state RDW(bnlj ) shows a relatively weak dependence on
the SPANC, that is, on the geometry of the single-particle
neutron bound-state potential in 15C. This is a sign that the
internal contribution Tint/bnlj is either small or has little
dependence on the SPANC. From Fig. 14 (see below) we can
see that the internal contribution, which is determined by the
post-ADWA cross section (black solid line) at RnA ≈ 6.5 fm
(at this channel radius the surface part reaches its maximum),
is quite large. Hence, the weak dependence of RDW(bnlj ) is
the result of the weak dependence on bnlj of the internal
part Tint/bnlj and we cannot reliably determine the SPANC
at which Rexp = RDW(bnlj ). Based on the divergence around
r0 = 1.25 fm, this gives an upper limit for the SF for transfer
to the ground state of 0.93.

This is a very instructive case. If we use the standard
procedure for determining the SF from the experimental data
and we adopt a standard set of geometrical parameters such
as r0 = 1.25 fm and a = 0.65 fm, we find bnlj = 1.42 fm−1/2

and SF SFnlj = 0.70, which follows by comparing the data to
the normalization of the ADWA calculated differential cross
section. Using the equation

C2
lj = SFnlj b

2
nlj , (11)

we get for the ANC C2
lj = 1.41 fm−1. However, we can equally

well use a higher r0 or a that leads to a larger bnlj and smaller
SFs. For bnlj < 1.42 fm−1/2 the obtained ANCs will be smaller
than the experimental ANC, while at bnlj > 1.42 fm−1/2 the
ANCs will agree with the experimentally determined ANC
within experimental uncertainties.

Our inability to pinpoint the SPANC and, consequently, the
SF from the transfer reaction data at 60 MeV, with the external
contribution fixed via the ANC, reflects the fact that transfer
reactions do not always present a proper tool to determine
the SF, and additional information about the geometry of the
single-particle potential is needed. An additional problem in
using the ANC-based method of determination of the SF is
caused by a strong sensitivity of the analysis to the deuteron
optical potential. For example, if we would use only the
KD03 global optical potential parameters, the experimentally
determined ANC would be lower and, correspondingly, Rexp

would be higher, better overlapping with the theoretical
RDW(bnlj ). Note that there are no single-nucleon optical
potentials available in literature for scattering on light nuclei
such as 14C. These are needed to calculate the deuteron
optical potential at 60 MeV in the entrance channel and
the proton optical potential in the exit channel. Both of the
optical potentials used, CH89 and KD03, are not fitted to
analyze our data and the lack of reliable nucleon optical
potentials is another reason for the failure of the ANC-based
method. Finally, in contrast to the standard approach, in which
the inaccuracy of the single-particle approach in the nuclear
interior is compensated by arbitrary variation of the external
part (the information about the ANC is disregarded), the ANC-
based method, a priori, requires a more accurate treatment
of the nuclear interior because the external contribution is

fixed and the main model dependence comes from the nuclear
interior part.

While Fig. 9 shows that the ground-state dependence of the
calculated cross section on the binding potential geometry is
weak, a stronger dependence on the binding potential geometry
is observed for the transfer to the first excited state. As seen on
the right in Fig. 9, RDW(bnlj ) overlaps with Rexp over the range
of r0 from around 0.91 to 1.08 fm. From the SPANC values
for those radius parameters and Eq. (11), we get a range of
SF values from 1.62 to 1.18, which is considerably higher
than expected and also higher than that obtained by mirror-
symmetry considerations with 15F. Thus, in this case, despite a
sharp dependence of RDW(bnlj ) on the SPANC bnlj , we cannot
reconcile the ANC and SF. Once again, the ANC-based method
reveals shortcomings of the standard approach. If we would
use a conventional approach with the standard geometry r0 =
1.25 fm and a = 0.65 fm, we get the SPANC bnlj = 1.42 and
the SF SFnlj = 0.70. It leads to C2

lj = 1.41 fm−1, which is
significantly lower than the experimental ANC squared. This
clearly shows that the single-particle approach in the nuclear
interior should be improved by a more microscopic approach.
Also, the ambiguity in the optical potentials contribute to the
problem.

While Fig. 9 shows that the ground-state dependence of the
calculated cross section on the binding potential geometry is
weak, a stronger dependence on the binding potential geometry
is observed for the transfer to the first excited state. As seen in
(b) in Fig. 9, Rcalc overlaps with Rexp over the range r0 from
around 0.91 to 1.08 fm. From the single-particle ANC values
for those radius parameters and the relation

SFlj =
C2

lj

b2
nlj

(12)

we get a range of SF values from 1.62 to 1.18, which is
considerably higher than expected and also higher than that
obtained by mirror-symmetry considerations with 15F which
are discussed in the following section. This indicates that the
interior contribution to the transfer matrix element is not being
correctly calculated and that a more sophisticated microscopic
approach needs to be developed. The difficulty in correctly
calculating this interior portion combined with the fact that
most transfer reactions are dominated by peripheral and
surface components highlights the difficulty in determining
spectroscopic factors by means of transfer reactions.

IV. STUDY OF THE 15C SF VIA THE MIRROR
NUCLEUS, 15F

In this section we use the 15C-15F mirror symmetry to obtain
a restriction on the SF of the two lowest states in these nuclei.
Specifically, we use the fact of near equidistant level spacing
in mirror nuclei with the exclusion of the abnormally large
isotopic shift of the S states which is known as the Nolen
Shiffer effect [34]. The 15C-15F case has been the topic of many
investigations. The most detailed and most recent studies were
made by Fortune [35] and Fortune and Sherr [36,37], who used
the isospin conservation and shell-model corrections to find
the isotopic shifts of the levels in question. A comprehensive
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review of the properties of the unstable light nuclei was made
by Millener [38]. Our approach is different from the others in
that, on the basis of the previous results, (a) we assume that
the single-particle wave functions generated by the Woods-
Saxon potential are good approximations for the structure of
the states [30,34–38], and (b) we fit experimental data on the
levels in question with the aim to fix the potential parameters.
The potential parameters then can be used further to obtain
the SF and the ANC. The neutron binding energies (BEs) for
the ground (1/2+) and the first excited (5/2+) states in 15C
are well known to be 1.218 and 0.478 MeV, respectively. The
compilation of data for the two lowest states in 15F can be
found in Ref. [35]. We averaged these data to obtain the BE of
the proton for the ground state in 15F as 1370 ± 70 keV with
a width of 750 ± 100 keV, and for the 5/2+ first excited state
−2780 ± 40 keV with a width of 275 ± 40 keV [39].

In these calculations, we fixed the Coulomb potential as the
potential of a uniformly charged sphere with the RC = 1.45 ×
141/3 fm. Large RC provides for an agreement with the rms
radius of the charge distribution in 16O. The parameters of the
Woods-Saxon potential were varied over 1.1 < r0 < 2.2 fm
and 0.55 < a < 0.72 fm. For each combination of r0 and a,
the depth of the real potential was fixed by a requirement
to fit BE of the neutron in 15C. Also, the conventional spin-
orbital potential with fixed parameters of Vso = 6.4 MeV and
a = 0.64 fm was used in the calculations of the BE for the
5/2+ state. We observed that 10% variations in the spin-orbit
potential did not influence our results.

The fit for the levels in 15C having been obtained, calcula-
tions were made for 15F with the same parameters but taking
into account the Coulomb interaction with the extra proton.
Figure 10 presents dependence of the BE (which is negative)
of the proton in the 15F 5/2+ state versus the rms radius
of the mirror state in 15C. It is seen that the larger the rms
radius, the more stable the mirror state in 15F. The dependence
is easily understood as a result of an effective decrease in

FIG. 10. (Color online) The (negative) proton binding energy for
the 5/2+ state in 15F versus the rms radius of the mirror state in 15C
generated by different parameters of the Woods-Saxon potential.

FIG. 11. (Color online) The same as Fig. 10 for the 1/2+ ground
state in 15F.

the Coulomb potential for larger radii of the wave functions.
There is a very small spread of points relative to the general
trend, which tells us that the specific values of r0 and a are
not important, but their combination affecting the value of the
rms radius is important. As is seen in Fig. 10, the experimental
BE corresponds to the rms radius of 3.97 fm. Because the
proton BE in the 5/2+ state should not depend upon the small
corrections to the single-particle wave function, this result
defines the geometry of the potential. This makes a restriction
on r0 + a = 1.78 ± 0.05 fm.

Figure 11 presents a similar graph for the 15C-15F ground
states. A trend similar to that in Fig. 10 is evident. However,
the spread of the points is slightly larger than in Fig. 10. The
points which are above of the curve correspond to a lower a/r0
ratio.

The geometry of the potential having been fixed by the
5/2+ analysis, this geometry was then used to calculate
the BE of the proton in the ground state of 15F, which
was found to be 1.295 ± 25 keV. Any corrections to the
pure 2s structure of this state should push it up (increasing
instability of 15F). For example, if the ground state of 15C
were an l = 2 state, then the mirror state in 15F would be
unbound to proton decay by 2.119 MeV. Hence, if the l = 0
configuration were absent in the 15C-15F ground states, the
BE difference between the ground and the first excited states
in 15F would be 2780 − 2119 = 661 keV. If the ground state
were a 100% pure 2s single-particle state, the difference would
be 2780 − 1295 = 1495 keV [the electromagnetic spin-orbital
interaction (∼30 keV) should be added to make the differ-
ence 1525 keV]. Making the needed proportions and taking
into account the experimental BE for the 15F ground state
(1370 keV) and the uncertainties, we obtain SFgs = 0.91+0.09

−0.09 .
Next we consider the restrictions on the SF by the widths

of the states in 15F,

SF = +

+s.p.
(13)
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The SF is the ratio of the experimentally determined width
of the state to the width calculated using shell-model wave
functions. It is known that the most sophisticated way to
calculate widths of broad states is to consider a pole in a
complex plane [40]. Here we used the dependence of the
maximum of the wave function upon the BE, as this method
also gives close results [40]. Moreover, this approach was
used to fit the experimental data [41,42]. The calculated widths
with parameters r0 = 1.18 and a = 0.6 are 0.590 MeV (for the
ground state) and 230 keV (for the 5/2+ state in 15F). After cor-
recting the calculated ground-state width to reproduce the ex-
perimental BE, it becomes 720 keV. The calculated values are
still smaller than the experimental ones. Taking into account
the experimental uncertainties in the widths and the excitation
energies, we obtain for the ground state SFgs ! 0.90, and for
the first excited state SFexc. ! 0.93. We tested and subsequently
neglected the weak dependence (15 keV for the excited state)
of the penetrability on the specific values of r0 and a.

If we use the the single-particle potential parameters
adopted here and the SFgs ! 0.90 we obtain the ANC values
C2

gs ! 1.66, which are lower than the values found from
transfer reactions presented in this work. This inconsistency
once again demonstrates that if we fix the external contribution
using the ANC, a standard single-particle approach used to
calculate the internal contribution is not accurate.

Very general considerations will result in the expectation of
a larger distortion of the simple single-particle configuration
for the excited (5/2+) state than for the ground state. As was
presented in Ref. [37], it is not surprising that the admixture is
larger for the 5/2+ state, because s1/2 lies below d5/2 and 2 +
⊗d lies above 2 + ⊗s, so that the unperturbed 5/2+ states will
be closer together than the 1/2+ ones increasing the mixing
for 5/2+.

V. NEW INSIGHT INTO DEUTERON STRIPPING THEORY

To better understand the peripheral nature of the higher-
energy (d,p) reaction and the failure of the new method
described in Sec. III, an examination of the underlying DWBA
reaction theory is needed. In Ref. [43] a new theory of
the deuteron stripping reactions populating bound states and
resonances was developed. It combines the surface integral
formalism [44,45], the R-matrix method, and the CDCC
method. While the work on the code of the new approach
is in progress, here we demonstrate the new theory using the
DWBA.

Let us consider the deuteron stripping reaction to bound
states,

d + A → p + F, (14)

where F = (An) is the bound state.
The post form of the DWBA amplitude is given by

MDW(post)(kpF , kdA) = 〈,(−)
f |&VpF |,(+)

i 〉, (15)

where ,
(+)
i = ϕpnχdA and ,

(−)
f = IF

A χ
(−)
pF are the initial and

final channel wave functions, ϕpn is the deuteron bound-state
wave function, χ

(+)
dA ≡ χ

(+)
kdA

and χ
(−)
pF ≡ χ

(−)
kpF

are the distorted
waves in the initial and final channels, kij is the relative

momentum of particles i and j ,

IF
A (rnA) =

√
A + 1{〈ϕA(ζA)|ϕF (ζA; rnA)〉} (16)

is the overlap function of the bound-state wave functions
ϕF (ζA; rnA) and ϕA(ζA) of nuclei F and A, correspondingly,
rnA is the radius-vector connecting n and the center of mass
of A. The integration in Eq. (16) is taken over all the internal
coordinates ζA of nucleus A, which include also spin-isospin
ones. The factor

√
A + 1 is the result of the antisymmetrization

in the isospin formalism between the transferred neutron and
nucleons of nucleus A. Also, &VpF = UpA + Vpn − UpF is
the transition operator in the post form, Uij is the optical
potential describing the interaction between nuclei i and j ,
and Vpn is the p-n interaction potential. Note that in a standard
DWBA the overlap function is approximated by

IF
A (rnA) = SnA ϕn(rnA), (17)

where SnA is the spectroscopic factor of the configuration
n + A in F and ϕn is the neutron bound-state wave function
in nucleus F calculated in the adopted mean-field potential.
However, here we keep the overlap function rather than using
approximation (17).

Similarly, the prior form of the DWBA amplitude is given
by

MDW(prior)(kpF , kdA) = 〈,(−)
f |&VdA|,(+)

i 〉, (18)

where &VdA = UpA + UnA − UdA.
The matrix element of the DWBA reaction amplitude can be

expressed in terms of the integrals over two Jacobian variables
rpF and rnA . One of the main goals of measuring transfer
reactions (14) is to determine the overlap function IF

A (rnA) .
In a new approach the integral over rnA is divided into the
internal (rnA ! RnA) and external (rnA > RnA) parts, where
RnA is the channel radius. After that, using the surface integral
formalism both post and prior forms can be written as [43])

MDW(post)(kpF , kdA) = MDW(prior)(kpF , kdA)

= M
DW(post)
int (kpF , kdA)

+MDW
S (kpF , kdA)

+M
DW(prior)
ext (kpF , kdA). (19)

Here

M
DW(post)
int (kpF , kdA) = 〈,(−)

f |&VpF |,(+)
i 〉|rnA!RnA

(20)

is the internal DWBA post-form amplitude, in which the
integration over rnA is taken in the subspace rnA ! RnA, while
the integration over rpF is performed over the whole space;

M
DW(prior)
ext (kpF , kdA) = 〈,(−)

f |&VdA
|,(+)

i 〉|rnA>RnA
(21)

is the external prior form of the DWBA amplitude, in which the
integration over rnA is taken in the subspace rnA > RnA, while
the integration over rpF is performed over the whole space.
It is clear that when RnA increases M

DW(post)
int → MDW(post),

while when RnA → 0 M
DW(prior)
ext → MDW(prior), where always

MDW(post) = MDW(prior). Finally, MDW
S is the surface amplitude,

which is given by the surface integral in the subspace over rnA

at rnA = RnA while the integration over rpF is performed over
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the whole space:

MDW
S (kpF , kdA) = 1

2 µnA

R2
nA

∫
d rpF χ

(+)
−kpF

(rpF )

×
∫

d (rnA

{
ϕpn(rpn) χ

(+)
kdA

(rdA)

×
∂

[
IF
A (rnA)

]∗

∂ rnA

−
[
IF
A (rnA)

]∗

×
∂ ϕpn(rpn) χ

(+)
kdA

(rdA)

∂ rnA

}∣∣∣∣
rnA=RnA

. (22)

Here we took into account that χ
(−)∗
k (r) = χ

(+)
−k (r).

Representation of the post and prior amplitudes in form (19)
has the following advantages:

(i) It shows explicitly that both amplitudes do coincide;
(ii) it allows one to determine the channel radius as the

radius RnA at which the surface amplitude reaches its
maximum value;

(iii) it allows one to determine how peripheral a reaction
is by estimating the internal part contribution, which
is given by M

DW(post)
int (kpF , kdA).

Note that the main goal of Ref. [43] was to apply the sur-
face integral formalism for the CDCC method. Because the
corresponding code is not yet available, we calculate here the
differential cross section obtained from the amplitude (19).
However, for the entry channel optical potential we use
the adiabatic model prescription [22], in which the d − A
optical potential in the initial state is given by the sum
of the proton and neutron optical potentials calculated at
half deuteron energy at the distance rpA = rnA = rdA. We
use the full transition operator in the post and prior forms
rather than just Vpn potential. Each nucleon optical potential
in the entry channel and the proton optical potential in
the exit channel is taken in the Koning and Delaroche
form [24].

Despite the fact that both post and prior form DWBA
amplitudes coincide, their behaviors as functions of RnA are
quite different and actually they coincide only at large-enough
RnA. In Figs. 12–15 we demonstrate the behavior of each
cross section generated by the corresponding amplitude of the
right-hand side of Eq. (19).

All four figures are very instructive. We see that at
large RnA post- and prior-form cross sections coincide,
as they should. The radius RnA at which the surface
integral reaches maximum is actually the channel radius
Rmax. For the 14C(d,p)15C(2s1/2; Ex = 0.0 MeV) reaction
at 23.4 MeV (Fig. 12) Rmax = 4.70 fm, while for the
14C(d,p)15C(1d5/2; Ex = 0.7 MeV) reaction at 23.4 MeV
(Fig. 13) Rmax = 5.0 fm. In both cases, the contribution of
the internal part (black solid line) at the channel radius Rmax
is significantly smaller than the surface (dashed blue line) and
the external part [prior form (red dotted line) integrated for
rnA " RnA]; that is, both reactions are peripheral.

We see a different pattern for the 60-MeV deuteron energy.
For the reaction 14C(d,p)15C(2s1/2; Ex = 0.0 MeV) at Ed =
60.0 MeV (Fig. 14), the channel radius Rmax = 6.0 fm and
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FIG. 12. (Color online) Differential cross section dependence on
RnA, where A = 14C, for the reaction 14C(d,p)15C(2s1/2; Ex =
0.0 MeV) at the incident deuteron energy of 23.4 MeV. Each cross
section is calculated using the full transition operator and the adiabatic
model prescription for the deuteron optical potential. The black solid
line is the post form of the ADWA differential cross section calculated
using the amplitude given by Eq. (20); the red dotted line is the prior
form of the ADWA differential cross section calculated using the
amplitude given by Eq. (18) with integration over rnA taken from 0
to RnA; the blue dashed line is the ADWA differential cross section
calculated using the surface amplitude MDW

S [43].

the contribution of the nuclear interior is significantly larger
than the surface and external terms; that is, this reaction is not
peripheral. For the transition to excited state at Ed = 60 MeV
(Fig. 15) the channel radius Rmax = 4 fm is smaller, but at this
channel radius the internal contribution is also small, although
not negligible.

VI. ASTROPHYSICAL 14C(n,γ )15C REACTION RATE

The radiative neutron capture rates for 14C(n,γ )15C have
been calculated using the code RADCAP [46] and the ANCs that
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FIG. 13. (Color online) Differential cross section dependence on
RnA for the reaction 14C(d,p)15C(1d5/2; Ex = 0.7 MeV) at the
incident deuteron energy of 23.4 MeV. Other notations are the same
as in Fig. 12.
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FIG. 14. (Color online) Differential cross section dependence
on RnA for the reaction 14C(d,p)15C(2s1/2; Ex = 0.0 MeV) at the
incident deuteron energy of 60.0 MeV. Other notations are the same
as in Fig. 12.

were found in this work. At astrophysical energies only the first
two states, the 2s1/2 ground state and the 740-keV 1d5/2 first
excited state, contribute to the neutron capture cross section.
The next state at 3.1 MeV and ∼40 keV in width is too high
to contribute [47]. S-wave neutron capture is not significant
for the 14C(n,γ ) reaction owing to parity conservation [7].
14C has J π = 0+ and coupled with an s-wave neutron would
give a system with J π = 1/2+. Because the ground and
first excited states in 15C are J π = 1/2+ and J π = 5/2+,
respectively, this only allows for weak M1 and E2 transitions.
Alternatively, a p-wave neutron would give the 14C + n system
J π = 1/2− or 3/2−, which would then be able to allow E1
transitions and thus a much higher cross section. For the
first excited state, E2 transitions should also be taken into
account [7].

The neutron binding potential used was of the WS form with
the real potential depth adjusted to reproduce the neutron BE
for each state. The binding potential parameters were, for the
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FIG. 15. (Color online) Differential cross section dependence on
RnA for the reaction 14C(d,p)15C(1d5/2; Ex = 0.7 MeV) at the
incident deuteron energy of 60.0 MeV. Other notations are the same
as in Fig. 12.
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FIG. 16. (Color online) Calculated cross section (sum of capture
to gs and first excited state, red line with red uncertainty) compared
with Ref. [5] (black dots).

ground state, V0 = −54.71 MeV, r = 2.89 fm, a = 0.60 fm,
and VSO = −9.30 MeV (using the SO convention described in
Ref. [46]). The same geometry was used for the central and SO
parts of the potential. The central depth was V0 = −54.11 MeV
for the first excited state.

The cross section divided by the square root of the energy
is given in Fig. 16 for both capture to the ground state and
the first excited state. The capture to the first excited-state
accounts for about 4% of the total (only the first two states
are considered). The sum of the results for the rates for two
states is shown along with the recent direct measurement of
Reifarth et al. [5] in Fig. 16. The calculated value for the
cross section for capture to the ground state at Ec.m. = 23 keV
was σgs(23 keV) = 5.1 ± 0.4 µb and to the first excited state
was σexc(23 keV) = 0.22 ± 0.02 µb. The total cross section
at 23 keV was found to be σ (23 keV) = 5.4 ± 0.5 µb,
which is in good agreement with the most recent direct
measurement, σ (23 keV) = 5.2 ± 0.3 µb [5]. In Ref. [33]
the value for the differential cross section was obtained by
multiplying the Maxwellian average cross section (MACS)
reported in Ref. [5] by 0.67, using the assumption of a
perfect E−1/2 energy dependence, but no explanation was
given for why the authors of Ref. [33] chose to eschew the
differential cross section presented in Ref. [5] in favor of the
simplified normalization of the MACS. Using the value given
in Ref. [5] would have resulted a disagreement for the cross
section obtained in Ref. [33]; however, given the corrected
value in Ref. [29], it would likely agree within the stated
uncertainty.

VII. SUMMARY

The ANC for 15C ↔ 14C + n has been determined for
the ground state and first excited state of 15C from multiple
new reaction measurements. The average values are C2

2s1/2 =
1.88 ± 0.18 fm−1 for the ground state and C2

1d5/2 = 4.25 ±
0.38 × 10−3 fm−1 for the first excited state. This was done
as part of an effort to evaluate the new method of Ref. [11]
to determine SFs with less uncertainty. The new method was
found to produce an upper limit on the SF for the ground state
owing to a weak dependence on the neutron binding potential
geometry and thus on the interior portion of the transfer matrix
element for the nonperipheral reaction measured. An even
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less peripheral reaction might yield better results; however,
14C(d,p)15C seems to be a poor choice because of the large
momentum mismatch and resulting small cross section if this
reaction were to be measured at a high-enough energy to have
an adequate dependence on the interior. The method gave a
range of SF values for the first excited state; however, that
range was quite high (SF = 1.18 to 1.62), which does not
match with the value of slightly less than 1 expected for a
strong single-particle state, nor does it match with the result
obtained from mirror-symmetry considerations. The need to
have a strong-enough dependence on the interior while at the
same time having a reaction that is described well in the DWBA
or ADWA is a serious limitation of the method of Ref. [11]. A
more microscopic approach to the reaction theory has been pre-
sented and future developments in this area may allow a better
description of the nuclear interior contribution to the transfer
matrix element and thus a better determination of the SF.

Using the ANCs found in the process of evaluating the
new method, the astrophysical direct-capture reaction rate
of 14C(n,γ )15C was calculated and the results are in good
agreement with the most recent direct measurement.
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